
Workflow for processing digitized documents at the
United Nations

João Maria Prieto Dantas Vizoso
joao.vizoso@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

September 2021

Abstract

This work addresses the problem of the digitization of paper documents under the responsibility of
the Archives and Records Management Service of the United Nations. Those collections are unique,
reflecting the history of the organization since 1945, which motivates its digitization, to promote its easy
access. So far, more than 10 million images and more than 5TB of data was created, a large part already
available online, but there is still a long way ahead to either digitize what is still in paper and to have an
automated workflow to process the digitized images and produce objects for convenient digital access.
This thesis therefore aims to build an effective automated workflow to process those digitized images for
optimal online publishing and search.
Keywords: Document, PDF, OCR, Workflow, Archive

1. Introduction
In the spring of 1945, it was held in San Francisco,
USA, the United Nations Conference on Interna-
tional Organization. As a result of this convention,
the Charter of the United Nations [1] was created,
allowing the foundation of the organization known
today as the United Nations. Apart from this impor-
tant document, many more documents were pro-
duced during that convention, making it necessary
to create a documents’ service unit, which primary
and mostly exclusive job was to maintain custody
of those documents.
In the present date, the Archives and Records
Management Section of the United Nations is the
result of that service that was initiated 75 years
ago, being responsible for the large number of doc-
uments produced during these years of United Na-
tions existence [4]. With the rise of new technolo-
gies and globalization, it became almost manda-
tory to find a better way to preserve these doc-
uments (all of them are unique and some of the
documents are very old and therefore very fragile).
As a solution, ARMS started to digitize and process
some of the documents [7]. Most of these doc-
uments are classified for security reasons. How-
ever, some of them are declassified and made
available to the general public from time to time.
When that happens, ARMS uploads those docu-
ments into their public database, which is available
to everyone with Internet access. So far, more than
10 million images and more than 5 TB of informa-

tion have been made available, but the process to
do this still takes a considerable amount of time
and resources (which can be allocated to different
tasks), and there are many more documents ready
to be digitized, processed and uploaded.

2. Optical Character Recognition
One of the fundamental parts of this dissertation is
to convert scanned images into searchable docu-
ments and to do so, there is a very useful technol-
ogy called Optical Character Recognition (OCR).
As its name implies, this solution allows recogniz-
ing characters contained in a scanned document or
image, turning it into text that can be manipulated
by a machine. This section briefly describes the
core concepts of an OCR system and its different
phases.

2.1. OCR review
As mentioned above, an OCR system’s main prob-
lem is the optical recognition of processed charac-
ters by a machine.
Both handwritten and printed characters can be
recognized by a typical OCR system, with the per-
formance of their recognition being directly linked
with the quality of the input documents (the better
the input, the better are the results) and the qual-
ity of the software being used (since each software
uses its own way to recognize characters).
Some of the typical problems an OCR system can
face are variations in the fonts being used, defor-

1



mations on the document being used as an input,
or images and graphics mixed with the text. The
usage of different fonts was partially solved with
the creation of two standardize fonts, easing the
OCR procedure: OCR-A (American version) and
OCR-B (European Version). The characteristics of
these two types of fonts include the same thickness
and width and the distinct shape of every charac-
ter [2]. While the usage of these fonts, which are
typically present in credit cards and bar codes, can
improve the accuracy of the optical recognition, it
still does not solve the recognition of handwritten
characters and other types of fonts that were used
in older documents.
Although important steps were made in recent
years, there is still no perfect system, so there is
always room for improvement. For example, hand-
writing, historical fonts, and the non-Latin alpha-
bet are the focus of a great variety of studies being
done that aim to improve the recognition of these
types of characters. In addition, some topics like
deep learning and voting systems can also play
an important role in implementing new and better
OCR solutions [9].

2.2. OCR reference architecture
Since its scanning, an image suffers different types
of processing during an OCR workflow until it
reaches the final result. Depending on several fac-
tors, such as the input/output type or the software
being used, an OCR architecture may differ from
system to system.
According to Ray Smith, the existing architectures
of OCR systems can be divided into four differ-
ent categories [8] : Traditional-naive, Traditional-
mature, Modern-naive and Modern-mature. (Fig-
ure 1)
The traditional-naive systems are the ones com-
posed by a traditional pipeline that starts with a
series of steps that make hard decisions on one
domains and passes the results to the next part of
the pipeline.
The traditional-mature are an improvement of the
previous ones, where the pipelined systems have
additional steps that revisit some of the earlier de-
cisions that were taken, with additional information
obtained in other parts of the pipeline. Some exam-
ples of this are the adaptive character classification
or the use of document dictionaries.
In other hand, the modern-naive OCR systems, try
to avoid making decisions at an early stage and
push all the hard problems into a monolithic sta-
tistical module, such as a Hidden Markov model.
The system then expects this module to solve ev-
erything at once.
Finally, the modern-mature systems are charac-
terized by increasingly complex models that con-

sider all the printed information structure, since us-
ing post-processing modules to revisit earlier de-
cisions would be against the main idea of using
HMM-based system.

Figure 1: Different OCR system’s architectures, according to
Ray Smith [8]

The architecture used as a reference for this dis-
sertation can be split into four main steps (Figure
2), and each one can be divided into several other
sub-steps.
The first main step is called Pre-Processing. Con-
sidering that digitized images can present a great
range of different layouts, fonts, and colors, there
is a need to prepare them to obtain a better result
when performing the OCR. Some of the most com-
mon methods that are used in the pre-processing
of the images by the state-of-art software are bina-
rization, in which the main goal is to convert the
source image into a binary one (only black and
white pixels); deskewing, by adjusting the rotation
of the document, making sure it is straight or simply
cropping or rescaling the images[5].
The second step is segmentation. Depending on
the software used and the user requirements, dif-
ferent types of segmentation can be performed.
Usually, there are three types of segmentation:
page segmentation, line segmentation, and word
segmentation. The first one aims to distinguish be-
tween areas of the image that contain text from
those that do not. After that, line segmentation
splits those found regions into lines of text. Fi-
nally, the lines are segmented, resulting in groups
of words [5].
The third step is the recognition itself. During this
step, segmented words are recognized by a trained
model, resulting in a textual representation of the
original image. The method used to recognize
words is different between OCR engines. [5].
And finally, the fifth step is post-processing. Af-
ter the words are recognized, the output is ready.
However, some sub-steps can be applied during
this phase, such as using dictionaries, which will
prevent the output from containing non-existing
words (sometimes it can be a problem since more

2



technical or made-up words are not present in the
dictionary). Considering that the output is normally
given in plain text, the post-processing step can
also include converting or assembling the final re-
sult into more complex formats (such as PDF, for
example) [5].

Figure 2: Main steps of an OCR reference architecture

3. Problem Analysis
Currently, the Archives and Records Management
Section of the United Nations have their own work-
flow to digitize and process documents. The exist-
ing workflow can be divided in four different tasks,
as can be seen on Figure 3.

Figure 3: Existing solution at ARMS

This workflow is performed by a member of the
staff. This member has the support of an IT team
in case there is an issue with the software or any
of the IT hardware.
It starts with the digitization of the documents.
However, since this step is out of the scope of this
dissertation, it will not be included in the proposed
solution, and it will be assumed that the documents
are already digitized. After the digitization, the doc-
uments that were scanned are saved as TIFF im-
ages.
After that, the TIFF images are converted to a PDF
file with defined settings. This is done so that the
OCR can be performed in the next task. Both of
these tasks are possible by using the Adobe Acro-
bat Pro DC software. At the end of this task, the
result is a searchable PDF file.
The last step of the workflow is post-processing, it
is optional and depends on two conditions that can
be divided into two sub-processes. The first is the
final file size: if the file is too large, it is compressed
or separated. Otherwise, the file is saved. The
second condition is the naming convention used: if
it is the desired one, the file is saved. If not, it has
to be renamed before that happens.
The majority of the problems that occur during the
processing of a document are between its digiti-
zation and its final state, mainly during the OCR

task. This happens because the software used,
despite offering that functionality, is not perfect for
text recognition on documents. Although it can rec-
ognize the regions containing text (i.e., the seg-
mentation seems reasonable), the recognized text
is often just “garbage” characters. It also does not
offer much flexibility on parameters available since
the only settings that can be pre-defined are the
language in which the text is written and the for-
mat in which the final file should be saved. In ad-
dition to that, it has some other points of failure,
such as crashing during the processing of a doc-
ument without providing additional information on
what caused it. This issue may not be very relevant
for the regular user, but this lack of information on
the current state of the process makes it difficult to
bypass any of the problems that may arise.
Another problem that the existing workflow has, is
its low efficiency since the intermediary steps be-
tween each task (for example, place the TIFF im-
age to be converted to PDF or prepare the doc-
ument to be OCR’ed) have to be performed by a
member of the staff manually.
Ideally, the automated workflow should work as a
black box. The user (in this case, the staff member)
should only be required to place the digitized doc-
ument in the workflow, select the desired parame-
ters and start the workflow. While the documents
are being processed, the user could perform other
unrelated tasks without worrying about intermedi-
ary steps. In the end, a similar file to the original
one is ready, although this is a PDF file and con-
tains the recognized text.

4. Requirements
After presenting the existing solution, the focus of
this dissertation is to improve it. Nevertheless, at
the same time, this one has to be considered as the
minimum acceptable solution possible, so what-
ever the proposed solution will be, it has to provide
the same or better results than the existing one.
Some of the requirements for a new solution are:

• The OCR accuracy should be improved, and
new specific features may be added for the
specific needs of ARMS.

• The user interface should be easy to use so
that a user with basic IT knowledge can per-
form the tasks needed to use the workflow. A
user guide explaining how to install and use
the workflow should also be prepared.

• The computers in ARMS have Windows 10
installed, so the proposed solution must be
able to run in this operating system. Also, it
should only use free-to-use and open-source
software.

3



• The workflow should be modular enough in
case new functionalities or parameters have to
be added. It also has to keep track of the state
of the process so that it can start from where
it stopped in case of interruption.

Building a workflow capable of processing all of the
documents handled by ARMS with great accuracy,
is a difficult task. These documents are very in-
homogeneous, containing different sizes, different
text structures, and different fonts. Some of the
scanned documents are very old, and therefore
barely legible, some of them even difficult to rec-
ognize by the human eye. However, it is important
that the workflow is able to process the majority of
the documents.
These requirements were collected during video
meetings with the ARMS staff, that occurred every
two weeks during the development of this disser-
tation. Besides gathering the requirements, these
meetings would also serve to update the progress.

5. Proposed Solution
After analyzing the existing problem, it was clear
that the proposed solution had to contain the fol-
lowing steps:

1. Split the multi-image TIFFs

2. Apply pre-processing to each image

3. Perform a first OCR run

4. Segment the images in order to find regions of
text

5. Perform a second OCR run on the segmented
images

6. Compare the results of both runs and chose
the best ones

7. Generate a single PDF file

The first step is needed because after the digitiza-
tion, the scanned images are stored in TIFF files,
the majority of them containing more than one im-
age. Since every image needs to be processed in-
dependently, they have to be split first. The focus of
the second step is to improve the quality of the im-
ages so that the OCR process can produce better
results. Steps 3 to 5 are an attempt to improve the
accuracy of the OCR processing. The first OCR
run is performed with the default settings, while the
second run is performed on segmented parts of the
text, using specific parametrization. The goal is to
create an additional “opinion” of the software on
what text should be recognized in those images.
The sixth step is creating some form of compar-
ison to decide on which opinion is the right one.
Finally, the last step merges the results of the pre-
vious steps into a single searchable PDF file.

5.1. Development
The approach chosen to build this version was
the creation of scripts for each part of the pro-
cess. These scripts were then coordinated by an-
other main script, that would make the connec-
tion between them. For this version, eleven dif-
ferent scripts were created: one for each step of
the process (split.py, preprocess.py, segment.py,
ocr.py, compare.py and merge.py), four auxiliary
scripts to keep track of the state of the process,
manage the creation/deletion of folders/files and
act as parsers (docManager.py, folderManager.py,
parser r.py and parser w.py) and one main script to
manage all the other scripts (workflow.py). In ad-
dition to the scripts, this workflow also followed a
predefined directory structure, as seen in Figure 4.

Figure 4: Final version directory structure

Trained data for specific languages being pro-
cessed by the OCR, other than English should be
placed in the tessdata folder, after being retrieved
from the Tesseract repository.

5.2. Technologies used
The scripts were written in Python (version 3), and
all the libraries and packages used would have to
be compatible with this coding language. This was
the chosen programming language due to its sim-
plicity and vast library support. The developing
environment was a Linux virtual machine, running
Ubuntu 16, with 6GB of RAM and 20GB of disk
space.
For the OCR processing, after testing some of the
existing solutions, Tesseract was the chosen one.
This open-source software provides good results
when recognizing text, it is easy to integrate with
Python, and it is well documented.

5.2.1 User interface

One of the goals when designing this workflow was
to create a user interface. This interface should be
easy to use and should not require any extraordi-
nary IT knowledge to complete the tasks needed
to run the workflow. However, during the design

4



of this solution, cooperation with another master’s
dissertation emerged, with the intention of assist-
ing in this project and giving their contribution in
other fields of the workflow. Therefore, design and
development decisions had to be made together
with the others involved. One example of this col-
laboration is the creation of a user interface, which
was no longer part of the scope of this disserta-
tion. Therefore, the interaction with this version of
the workflow is done through the command line.

5.2.2 tesserocr

In the first version of the workflow, the chosen tool
to use Tesseract was the python library pytesser-
act. This library is just a wrapper of the tesseract-
ocr command-line interface, which means that ev-
ery time the function to recognize the text is called,
it loads the model and processes the image. This
library was not fast enough and did not allow much
flexibility when choosing specific parameters.
After some research, another Python tool that dealt
with the Tesseract was discovered. The name
of this tool is tesserocr, and it also consists of a
Python wrapper, but this one is a wrapper around
the Tesseract C++ API. By interfacing directly with
the API, there is more flexibility, and other ad-
vanced features can be used. The trade-off is
understanding its behavior since using it is more
complex than the previous solution. Some features
allowed with this tool are the introduction of new
trained data for specific languages (more than 100
options available), the access to information and
decisions being made by the OCR engine, or the
definition of the page segmentation method to be
used.

5.3. Execution
To run the workflow, the following command should
be used in the Command Line:

$ python3 workflow.py path to file

Another feature that was added to this version was
the introduction of parametrization, being possible
to define some parameters when running the work-
flow. In this particular version, there are seven dif-
ferent parameters that could be defined, but more
can be added in the future. Those seven parame-
ters are:

• –comp - Disables the line segmentation com-
parison, as explained in the “Segmentation”
subsection.

• –folder - Instead of running the workflow in just
a single file, all the files in the specified folder
are processed.

• –force - If the workflow was interrupted, in-
stead of continuing from where it stopped, it
starts from the beginning.

• –help - Shows how to run the workflow and
shows the existing parameters.

• –lang - This parameter is used to tell the work-
flow in which language the documents are
written. More than one language can be se-
lected. Default is English. This parameter is
important for the OCR processing, and its use
is recommended. Available languages have to
be downloaded previously.

• –prep - Performs some additional pre-
processing techniques to the images, as ex-
plained in the “Pre-processing” subsection.

• –tmp - Keeps the temporary files instead of
deleting them at the end of the workflow.

When executing the previous command with or
without any of these parameters, the workflow ex-
ecution starts.

5.3.1 Prologue

The workflow starts its execution by creating a pro-
cess. This process can correspond to the execu-
tion of a single file or the execution of several files
in a specific folder, in case the –folder parameter
was used.
The creation of a process is characterized by the
creation of a JSON file in the tmp folder, as well as
the creation of a folder inside the tmp and results
folders, with the name of the original file (or the
name of the original folder), which is also the name
of the process by default. The JSON file contains
only one entry with two different fields: the name
of the process and the already processed files in-
cluded in this process (which is empty at the begin-
ning of the execution)
The purpose of this file is to keep the state of the
workflow in case there is an interruption and to pre-
vent overwriting in case the workflow is used again
with the same files. Every time the workflow is
started, it checks if a process with the same name
already exists. If the answer is yes, it continues the
process from where it stopped unless the –force
parameter is used. In that case, all the progress
until then is deleted, and the workflow starts from
the beginning.
To keep track of the state of a specific file, an-
other JSON file is created inside the correspond-
ing folder of each process. There is one JSON file
for each file in that process. This data file contains
only one entry with the following fields: name of
the file, path to the original file, and status. The

5



status field contains six other fields corresponding
to each step of the process, namely split, prepro-
cess, segment, ocr, compare and merge.

5.3.2 Splitting

The first step is splitting the pages in case there
is a multi-page TIFF image. This splitting is per-
formed by the split.py script. The script uses the
Python Image Library (PIL) to handle the multi-
image TIFF files, specifically the Image module.
With the seek() and save() functions, it is possi-
ble to split the TIFF multi-paged files into sepa-
rated ones containing only one TIFF image per file.
These files are saved, following the naming con-
vention “page ” + “#number of the page” in the tmp
folder.

Input: multi-paged TIFF image with n pages
Output: n TIFF images , with n=number of pages

5.3.3 Pre-processing

One of the steps that was added to this version
was pre-processing. In this step, performed by the
preprocess.py script, additional pre-process tech-
niques are applied to the split TIFF images. There
are two options when running this script. In the de-
fault option, the thresholded images produced by
the internal process of the Tesseract API are saved
on the tmp folder. The other option occurs when
the –prep parameter is used. When selecting this
option, four additional techniques are applied, us-
ing the cv2 library,
The images resulting from this step are the ones
that are going to be used on the rest of the work-
flow, except the merge step, where the original im-
ages are the ones used.

Input: n TIFF images
Output: n TIFF processed images

5.3.4 Segmentation

This step is performed by the segment.py script,
and can be divided into two different sub-steps.
The first sub-step to perform the segmentation of
the images is a first OCR run. This run is done
with the default settings of the Tesseract API and
results on an hOCR file for each one of the images.
These hOCR files are stored in the tmp folder.
In the second sub-step, with the information gath-
ered in the hOCR files, all the text lines in the im-
ages are cropped and saved as separated images.
After that, the information regarding all the recog-
nized text lines is stored in a JSON file, called re-
gions.JSON. There is an entry for each one of the
images, each entry containing the corresponding

information. The information gathered includes the
id of the text line, the bounding box values (bbox
property), the coordinates of the text line in the
image, and the path to the corresponding hOCR
file. Additional fields like the recognized text and
the words confidence are also created but remain
empty until the next step.

Input: TIFF image
Output: n hOCR files, with n=original TIFF im-
ages + n TIFF images, with n=number of segments
found

5.3.5 OCR

The OCR step, which is actually the second time
the Tesseract API is called to do text recognition, is
performed by the ocr.py script. This time the recog-
nition is done on the text segments collected in the
previous step. By calling the Tesseract API, with
the ”Page Segmentation Mode” parameter set to
PSM.SINGLE LINE, it is expected that the recogni-
tion results will be more accurate because the sys-
tem is being told that the images being processed
contain only one line of text. In addition to the rec-
ognized text, the corresponding word confidences
are collected as well. In the end, the regions.JSON
is updated on all the text and word conf fields.

Input: n TIFF images, with n=number of segments
+ regions.JSON
Output: updated regions.JSON

5.3.6 Comparison

Now that there are two different OCR runs, there
is a necessity to compare which one contains the
best results. To do so, there is a step called Com-
parison, performed by the compare.py script.
In this step, the text recognized in the first OCR
run, made on the Segmentation step and stored
in the hOCR files, and the text recognized in the
previous run and stored in the regions.JSON file is
compared.
This script compares all the text lines found in both
runs and checks if the word confidences are differ-
ent between the corresponding bounding boxes. If
the word confidences is different, the highest one is
chosen. This leads to a change on the hOCR file,
where the recognized text and their corresponding
word confidences are updated.
To parse and update the hOCR file, two additional
auxiliary scripts were created. The first one was
the parser r.py, that uses the bs4 library, usually
used for scrapping information out of web pages.
This script allowed parsing the content contained
in the hOCR files. The second script was the
parser w.py that used the xml library, specifically

6



the ElementTree module, used for creating XML
data, to write into the hOCR files.
In the case where the –comp parameter was used,
this step did not occur, and only the recognized text
of the first OCR run would be considered. This pa-
rameter could be used in cases where time effi-
ciency is more important than accuracy.

Input: n hOCR files + regions.JSON
Output: n updated hOCR files

5.3.7 Merging

Finally, the last step was merging all the data back
into a single PDF. This step was performed by the
merge.py script. This script is an adaptation of
an open-source script that is part of the hocr-tools
repository [3].
After the hOCR files being ready, their content is
parsed again to gather the recognized text and
its location on the image. Using the open-source
version of the Report Lab tools, which includes a
Python library, a PDF file with two layers is gener-
ated: the first layer is the original TIFF image, while
the second layer is the recognized text in its correct
position, written in an invisible font. This is done for
each hOCR file and its corresponding TIFF image,
creating the individual pages of the PDF file. In the
end, a PDF file with all the pages is generated, re-
sulting in the desired outcome of the workflow.

Input: n hOCR files + n original TIFF images
Output: PDF file

5.4. Deployment
As it was mentioned before, the environment of
development of this solution was Linux. However,
the workflow was designed to work in all platforms,
specifically on Windows10, as stated in the re-
quirements. When the deployment was done to
this operating system to test its feasibility, it was
found that one of the components of the workflow,
although compatible with Windows machines, was
too complex for someone with basic IT knowledge
to install. This component that was part of the
Tesseract software would not allow the workflow to
be natively installed on ARMS computers.
To solve this setback, it was necessary to add an-
other task to the development of the proposed so-
lution: create a virtual environment to run the work-
flow. Taking this into account, and after considering
between two solutions, the creation and configura-
tion of a virtual machine or the creation of a Docker
container, the latter was chosen.
After some research about this technology, a Dock-
erfile containing all the steps necessary to install

and configure all the components of the work-
flow was produced, enabling the deployment of the
workflow on Windows computers.
The Docker image, besides all the required soft-
ware and packages that needed to be installed,
also included the creation of a Docker volume,
which is a file system mounted on the Docker con-
tainer in order to preserve the data generated by
the running container. In other words, it works as a
shared folder between the virtual environment and
the host computer. This feature is useful so that
the users will not have to worry about transferring
the images to be processed into the virtual environ-
ment, since they only must be placed in a specific
folder and then be accessed by both the host and
the virtual environment.

6. Assessments
The assessment of the developed workflow can be
split into two different phases. First, after the de-
velopment ended, the workflow was deployed and
installed in the ARMS computers to test its feasi-
bility in a real-world environment. Second, at the
same time, another phase to evaluate the workflow
was performed in the same environment as it was
developed. This evaluation was performed both in
terms of efficiency and effectiveness.

6.1. Real-world environment
The assessment on a real-world environment is
fundamental since it is this assessment that will tell
if the workflow can be used by ARMS.

6.1.1 Installation and setup

To perform this evaluation, two sessions were
scheduled to install the workflow. One session with
a staff member responsible for digitizing and pro-
cessing the digitized images (next referred to as
User1), and another session with a staff member
responsible for other tasks, not directly related to
the processing of the digitized images (referred to
as User2). Prior to these sessions, the code was
made available in a GitHub repository, together
with a user guide prepared specifically for this pur-
pose.
In addition to the source code, the only thing that
was required to install previously was the Docker
desktop software and the Linux kernel update
package.
The sessions to install the workflow were per-
formed using the shared screen feature of the Mi-
crosoft Teams software. To assess how easy it was
to install it, the users were required to try to per-
form the installation by themselves, following the
steps on the user guide. However, if there were
questions, they could be answered to ensure that
the workflow would work.

7



The first session with User1 took about thirty min-
utes. Issues related to the installation and setup of
the Docker desktop software in ARMS computers
were the reason why it took so long. These com-
puters have a strict policy on the type of software
that can be installed, for security reasons, so ad-
ministrator privileges were needed.
Another issue raised during that installation ses-
sion was that the first version of the user guide re-
quired the user to introduce some commands on
the Windows command line. Since the user did not
have enough IT knowledge to perform those ac-
tions, two bash scripts were prepared to ease its
work. One bash script to build the Docker image
from the Dockerfile, that only has to be used once,
and another bash script to run the Docker, that has
to run every time the workflow is used.
For the second session, the user guide was
changed to introduce the recently created bash
scripts. After these changes and with the previ-
ous experience obtained in the previous session,
it was easier to solve the issues that could arise
during the installation and setup of the workflow.
For that reason, the session took less time, being
completed in about fifteen minutes.
The use of Docker containers to deploy the work-
flow ended up being a good idea since it turns the
process a lot easier, taking less time to do it. In
addition, instead of having to install all the libraries
and dependencies, only the Docker software has
to be installed.

6.1.2 Testing

The testing of the workflow in a real-world environ-
ment was performed for two weeks. Unfortunately,
due to delays in the elaboration of this thesis, it
was not possible to perform extensive testing with
an appropriate results collection.
The workflow was tested with a few scanned doc-
uments by User1, and the feedback was given by
e-mail and through one of the biweekly meetings.
The user reported two different bugs on the exe-
cution of the workflow and one processing error.
Both bugs were related to problems in the develop-
ment of the workflow and were quickly fixed. The
processing error happened during the processing
of one of the samples, and it was caused by one
faulty TIFF image that was causing the workflow to
crash.
Positive feedback was also given, and accordingly,
to the user who performed the tests, the OCR re-
sults are better than those obtained by the previ-
ously used software, Adobe Acrobat Pro DC.
In addition to that, the user also stated that run-
ning the workflow without the –prep parameter pro-
duced very bad results when compared with the

results obtained with that parameter. However, the
option to use the workflow without this parameter
was kept for when the scanned documents are al-
ready legible and do not need that extra step.

6.2. Development environment
Besides the functional assessment made on real-
world environment, a more extensive testing had
to be performed to measure the performance of
the proposed solution. For this purpose, a batch of
files, containing TIFF images, were prepared, and
made available by the ARMS team, to be tested
during and after the development of the workflow.
The performance was measured in two different
ways. It was measured in terms of efficiency,
where the chosen metric was the time each step
takes to process. It was also measured in terms
of effectiveness, where the OCR accuracy is as-
sessed based on what the expected result is. The
environment used to obtain the results was a ma-
chine running Windows10, with an Intel(R) Core
(TM) i7-10510U CPU @ 1.80GHz 2.30 GHz and
16GB RAM. The workflow was running inside a
Docker container, running Ubuntu18.
The results on the assessment of the efficiency and
effectiveness of the developed workflow are pre-
sented in the next two subsections.

6.2.1 Efficiency

As stated above, the chosen metric to measure the
efficiency of the proposed solution was the time
the workflow took to perform each task. For this
evaluation, nine different files were chosen from
the available batch. Although it is difficult to obtain
a set of documents that represent the majority of
the documents usually processed by ARMS, these
documents were chosen based on their size and
number of pages, with the objective of obtaining a
greater representation of what the documents pro-
cessed by the workflow may be. The size of each
file (in megabytes) and their number of pages can
be seen in Figure 5. As it is possible to observe,
the documents vary from 111,22MB and 6 pages
to 2058,21MB and 120 pages.

Figure 5: Files used in the assessment

To measure the time each task took to finish, the
source code of the workflow was changed, to re-
trieve that information. The obtained values were
then saved into an Excel file.

8



The obtained values were collected after
the workflow was used with three different
parametrizations: with the default parameters, with
the –prep parameter and with the –comp parame-
ter. The use of –prep parameter was important to
see if improved images resulted in an improvement
of the execution time. On the other hand, the use
of the parameter –comp only serves to compare
the final execution time, since two steps (second
OCR pass and comparison) are skipped. Figure
6 shows the average execution time of each task
for the three different parametrizations and the total
times for each parameter can be checked in Figure
7.

Figure 6: Average processing time using three different
parametrizations

Figure 7: Total processing time using three different
parametrizations

By looking at the results obtained it is possible to
reach the following conclusions:

• Overall, the workflow usually performs faster if
the –prep parameter is used. It performs the
slowest using the default parameters.

• The only task where the –prep parameter
takes longer than the others, is the Pre-
processing.

• The segmentation task takes much more time
if no additional pre-processing is provided.

6.2.2 Effectiveness

The accuracy of the OCR was the chosen metric to
measure the effectiveness of the workflow. How-
ever, since the majority of the documents at ARMS

do not present well-structured text, it is difficult to
calculate specific metrics like the Character Error
Rate (CER) and the Word Error Rate (WER) using
the original images. In addition to that, measuring
the OCR accuracy implicates the manual transcrip-
tion of the images to obtain the ground truth (i.e.,
the expected result), which is a laborious and time-
consuming task.
To perform this assessment, three images were
cropped so that the OCR system processed only
well-structured text. Next, those images were pro-
cessed by the workflow developed in this disserta-
tion and by the Adobe Acrobat Pro DC software.
After that, the results of each run were compared
with the expected result after manually transcribing
the images.
In addition to the visual comparison, the compar-
ison method was the calculation of the Character
Error Rate and the Word Error Rate. These metrics
use the Levenshtein distance [6] to calculate differ-
ences between two different strings. The CER cal-
culates the differences on a character level, while
the WER calculates it on a word level (which is
more relevant in this project’s scope). The closer
these values are to zero, the fewer errors there
were when recognizing the text. The calculation
of these values was done through a Python library
called fastwer.
The chosen images were selected accordingly to
their legibility. The first image contained black text
on white background, providing good legibility. The
second image was less legible since it had black
text on beige background. Finally, the third image
was even less legible due to its light blueish text on
beige background.
To compare the results, the workflow was used with
two different parameters: the default parameters
and the –prep parameter. This way, it was possible
to infer how helpful the latter could be.
The obtained results when using the workflow with
the default parameters, can be seen in Figure 8.

Figure 8: Obtained results using the default parameters

The results when using the workflow with the –prep
parameter, can be observed in Figure 9.

9



Figure 9: Obtained results using the –prep parameter

Finally, the results obtained by the Adobe Acrobat
Pro DC are presented in Figure 10.

Figure 10: Obtained results using the Adobe Acrobat Pro DC

When analyzing the results, it is possible to con-
clude that in the set of images used, the proposed
solution of this dissertation provided better results
than the Adobe Acrobat Pro DC software, when
recognizing the text contained in the images. Re-
garding the use of the –prep parameter, the results
have shown that it can be useful in a certain type of
images. However, it does not always provide better
results than the default parameter, that is why it is
necessary to keep both options available.

7. Conclusions
As mentioned earlier, it was necessary to develop
a new workflow for processing documents scanned
for ARMS since the current workflow lacked au-
tomation, and sometimes satisfactory results. It
was with this in mind that this dissertation was
composed.
After presenting the problem, it was necessary to
start outlining what would become the final solu-
tion. For this, it was essential to deepen the knowl-
edge about the relevant file formats, namely PDF
and TIFF. Furthermore, after this study, it was also
essential to know the state of the art of OCR tech-
nology since this is one of the fundamental parts
of the workflow. After gathering all this knowledge,
an analysis of the existing solution and the stake-
holder requirements was made to design a solu-
tion.
In an initial phase, this development resulted in a
simple workflow with the goal of serving as a proof-
of-concept. The goal of this design choice was
to have a complete (i.e., workflow that functioned
from start to finish) to present to the ARMS team.

Since this workflow was too simplistic and had
the potential to add other functionalities, the initial
workflow started to be incremented until it reached
a final version. In this final version, new function-
alities such as pre-processing the images or using
two different segmentation types were added.
Upon completion of this final version, it was de-
ployed to the computers of the ARMS team in order
to test the feasibility of using this workflow. At the
same time, performance assessments were made,
to measure the efficiency and effectiveness of the
workflow. The results of these evaluations were
satisfactory, although there is room for improve-
ment.
In conclusion, this dissertation was able to deliver
what it set out to do, namely a complete workflow
capable of processing a set of digitized images, re-
sulting in a PDF file with a text layer, ready to be
uploaded to the ARMS public database.

References
[1] United nations charter and statute of the inter-

national court of justice, 1945.

[2] N. Anderson, G. Muhlberger, and A. Antona-
copoulos. Optical character recognition impact
best practice guide impact project. 2013.

[3] T. M. Breuel. hocr-tools.
https://github.com/ocropus/hocr-tools, 2013.

[4] R. Claus. The united nations archives. The
American Archivist, 10(2):129–132, 1947.

[5] N. Islam, Z. Islam, and N. Noor. A survey on op-
tical character recognition system. ITB Journal
of Information and Communication Technology,
12 2016.

[6] A. S. Lhoussain, G. Hicham, and Y. Abdel-
lah. Adaptating the levenshtein distance to
contextual spelling correction. International
Journal of Computer Science and Applications,
12(1):127–133, 2015.

[7] T. Newton. Record-keeping requirements for
digitization, Apr 2009.

[8] R. Smith. History of the tesseract ocr engine:
what worked and what didn’t. Proceedings of
SPIE - The International Society for Optical En-
gineering, pages 02–, 02 2013.

[9] A. Somani. Council post: The future of ocr is
deep learning, Sep 2019.

10


